impact factor journal of physics condensed matter

impact factor journal of physics condensed matter is a critical metric for researchers and academics aiming to publish or reference high-quality studies in the field of condensed matter physics. This article explores the significance of the impact factor for the Journal of Physics: Condensed Matter, highlighting its role in evaluating the journal's reputation and influence within the scientific community. Understanding the impact factor allows scholars to gauge the visibility and citation trends of articles, assisting in informed decisions about where to submit their research. Additionally, the article delves into how the journal's impact factor compares with other leading publications in condensed matter physics and related disciplines. Factors influencing the impact factor, such as publication frequency, article types, and citation patterns, are also discussed. The aim is to provide a comprehensive overview of the impact factor journal of physics condensed matter to guide researchers, librarians, and institutions in their academic pursuits. The following sections will cover the definition and calculation of the impact factor, the journal's current standing, comparison with peer journals, and practical implications for authors and readers.

- Understanding the Impact Factor
- Overview of Journal of Physics: Condensed Matter
- Current Impact Factor and Its Significance
- Comparison with Other Journals in Condensed Matter Physics
- Factors Affecting the Impact Factor of the Journal
- Practical Implications for Researchers and Institutions

Understanding the Impact Factor

The impact factor is a widely recognized bibliometric indicator used to measure the average number of citations to recent articles published in a specific journal. It serves as a proxy for the journal's prestige and influence within its academic field. The impact factor is calculated annually by dividing the number of citations in the current year to articles published in the previous two years by the total number of citable articles published during those two years.

Calculation Methodology

To calculate the impact factor, the following formula is applied:

• Impact Factor (IF) = Citations in Year X to articles published in Years X-1 and X-2 / Number of citable articles published in Years X-1 and X-2

This metric emphasizes recent research impact, reflecting how often a journal's articles are cited shortly after publication. While the impact factor is a useful tool for assessing journal quality, it should be interpreted alongside other metrics and qualitative factors.

Limitations and Criticisms

Despite its popularity, the impact factor has limitations. It does not account for citation distribution skewness, can be influenced by editorial policies, and may vary significantly across disciplines. Additionally, it does not measure the quality of individual articles but rather the journal as a whole. Awareness of these limitations is essential when using the impact factor in academic decision-making.

Overview of Journal of Physics: Condensed Matter

Journal of Physics: Condensed Matter is a leading peer-reviewed publication focusing on condensed matter physics, a branch of physics that deals with the physical properties of condensed phases of matter. This journal covers a broad spectrum of topics including nanomaterials, soft matter, quantum materials, and electronic properties of solids.

Scope and Areas of Focus

The journal publishes original research articles, reviews, and rapid communications that advance the understanding of condensed matter phenomena. Topics include crystallography, magnetism, superconductivity, and surface science, reflecting a diverse range of scientific inquiries within the field.

Publication Frequency and Editorial Standards

Journal of Physics: Condensed Matter typically publishes multiple issues per year, maintaining rigorous peer-review processes to ensure high scientific standards. The editorial board comprises esteemed researchers who oversee the quality and relevance of published content, contributing to the journal's strong reputation in the physics community.

Current Impact Factor and Its Significance

The impact factor of the Journal of Physics: Condensed Matter is an important indicator of its influence in the condensed matter physics research community. As of the most recent Journal Citation Reports, the journal's impact factor reflects its citation rate relative to comparable publications.

Recent Impact Factor Trends

Over recent years, the journal has maintained a steady impact factor, demonstrating consistent citation performance. This stability suggests sustained interest and relevance of the research published within its pages. Researchers often consider this metric when choosing a venue for their work due to the journal's visibility and recognition.

Interpretation of the Impact Factor

A higher impact factor generally indicates broader reach and higher citation frequency, which can enhance the perceived quality of published articles. For Journal of Physics: Condensed Matter, the impact factor conveys its role as a key platform for disseminating significant discoveries in condensed matter physics.

Comparison with Other Journals in Condensed Matter Physics

Comparing the impact factor of Journal of Physics: Condensed Matter with peer journals provides insight into its relative standing within the field. Such comparisons help researchers identify the most influential journals for publishing and referencing.

Leading Journals in the Field

Several other journals also focus on condensed matter physics, including Physical Review B, Applied Physics Letters, and Advanced Materials. Each journal has distinct editorial policies, scope, and impact factor metrics that influence its reputation.

Impact Factor Comparison Table

- Journal of Physics: Condensed Matter Moderate to high impact factor, broad scope in condensed matter physics
- Physical Review B Generally higher impact factor, strong emphasis on fundamental condensed matter research
- Applied Physics Letters Focus on applied physics with a competitive impact factor
- Advanced Materials High impact factor, multidisciplinary focus including condensed matter materials

This comparison underlines the strengths and niches of each journal, guiding authors towards the most appropriate publication outlets based on their research focus and desired impact.

Factors Affecting the Impact Factor of the Journal

Several elements influence the impact factor of the Journal of Physics: Condensed Matter, ranging from editorial strategies to the nature of the research published. Understanding these factors helps explain fluctuations and trends in the metric.

Editorial Policies and Article Types

The inclusion of review articles, which generally receive more citations than original research papers, can elevate the impact factor. Similarly, the journal's acceptance rate and emphasis on cutting-edge topics affect its citation profile.

Research Trends and Community Engagement

Emerging topics in condensed matter physics, such as two-dimensional materials or topological insulators, can attract heightened citation activity. The journal's ability to publish timely and relevant research in these areas contributes to its impact factor.

Publication Volume and Citation Practices

Publishing a higher volume of articles increases the denominator in the impact factor calculation, which can dilute the metric if citations do not scale proportionally. Citation practices, including self-citations and collaborative networks, also play a role.

Practical Implications for Researchers and Institutions

The impact factor of the Journal of Physics: Condensed Matter holds practical significance for various stakeholders in the academic ecosystem. It influences decisions related to publishing, funding, and evaluation.

For Authors

Authors often seek journals with reputable impact factors to maximize the visibility and credibility of their work. Publishing in a journal with a recognized impact factor like Journal of Physics: Condensed Matter can enhance career prospects and academic recognition.

For Institutions and Libraries

Academic institutions and libraries use impact factor data to guide subscription decisions and assess research output quality. A journal's impact factor informs the allocation of resources and supports institutional rankings.

For Funding Agencies

Funding bodies may consider the impact factor of journals where applicants

publish as part of their evaluation criteria. A high impact factor journal can reflect the significance and reach of funded research.

Frequently Asked Questions

What is the current impact factor of the Journal of Physics: Condensed Matter?

As of the latest Journal Citation Reports, the impact factor of the Journal of Physics: Condensed Matter is approximately 2.5. However, this value is subject to annual updates.

How is the impact factor of the Journal of Physics: Condensed Matter calculated?

The impact factor is calculated by dividing the number of citations in a given year to articles published in the previous two years by the total number of articles published in those two years.

Why is the impact factor important for the Journal of Physics: Condensed Matter?

The impact factor is important as it reflects the average citation frequency of articles in the journal, indicating its influence and prestige within the condensed matter physics research community.

How does the impact factor of the Journal of Physics: Condensed Matter compare to other physics journals?

The Journal of Physics: Condensed Matter has a moderate impact factor compared to other physics journals, ranking well within specialized condensed matter physics publications but generally lower than broad-scope or high-impact physics journals like Physical Review Letters.

Can the impact factor of the Journal of Physics: Condensed Matter affect where researchers choose to publish?

Yes, many researchers consider the impact factor when selecting a journal to publish in, as higher impact factors often correlate with greater visibility and recognition in the scientific community.

Has the impact factor of the Journal of Physics: Condensed Matter increased or decreased in recent years?

The impact factor of the Journal of Physics: Condensed Matter has generally shown stability with slight fluctuations over recent years, reflecting consistent citation rates in the field.

Where can I find the official impact factor for the Journal of Physics: Condensed Matter?

The official impact factor can be found in the annual Journal Citation Reports published by Clarivate Analytics or on the journal's official website under the metrics or about section.

Does the Journal of Physics: Condensed Matter have other metrics besides impact factor?

Yes, the journal also reports metrics such as the 5-year impact factor, hindex, Eigenfactor score, and article influence score to provide a broader view of its scientific impact.

How can authors increase the citation impact of their articles published in the Journal of Physics: Condensed Matter?

Authors can increase citation impact by ensuring high-quality, novel research, promoting their work through conferences and social media, and collaborating widely to enhance visibility within the condensed matter physics community.

Additional Resources

- 1. Advances in Condensed Matter Physics
 This book provides a comprehensive overview of recent developments in condensed matter physics, covering both theoretical and experimental aspects. It discusses topics such as quantum phase transitions, electron correlations, and novel materials like topological insulators. Ideal for researchers aiming to publish in high-impact journals, the text emphasizes cutting-edge techniques and findings that drive the field forward.
- 2. Quantum Materials: Fundamentals and Applications
 Focusing on the rapidly evolving field of quantum materials, this book
 explores their unique properties and potential technological applications. It
 delves into superconductivity, magnetism, and low-dimensional systems,
 providing a foundation for understanding complex condensed matter phenomena.

The content is tailored for scientists targeting publication in top-tier physics journals.

- 3. Experimental Techniques in Condensed Matter Physics
 This book offers a detailed guide to the experimental methods used to
 investigate condensed matter systems. It covers spectroscopy, scattering
 techniques, and microscopy methods essential for characterizing material
 properties. Researchers will find practical insights that can enhance the
 quality and impact of their experimental studies.
- 4. Theoretical Models of Strongly Correlated Systems
 Dedicated to the theoretical frameworks describing strongly correlated
 electron systems, this book covers models like the Hubbard and t-J models. It
 discusses computational approaches and analytical methods to tackle complex
 interactions in condensed matter. The book is valuable for theorists seeking
 to contribute novel insights to high-impact physics journals.
- 5. Nanostructures and Low-Dimensional Systems
 Exploring the physics of nanomaterials and low-dimensional systems, this book
 highlights their unique electronic, optical, and mechanical properties.
 Topics include quantum dots, nanowires, and graphene, with emphasis on
 fabrication and characterization techniques. It serves as a resource for
 researchers interested in publishing breakthrough findings in condensed
 matter physics.
- 6. Spintronics and Magnetic Materials
 This text examines the principles and applications of spin-based electronics and magnetic phenomena in condensed matter. Covering spin transport, magnetoresistance, and novel magnetic materials, it bridges fundamental physics with potential device technologies. The book supports researchers aiming to publish in journals with a focus on magnetism and spintronics.
- 7. Topological Phases and Quantum Computation
 Focusing on topological phases of matter and their implications for quantum computing, this book reviews theoretical concepts and experimental realizations. It addresses topological insulators, superconductors, and anyons, highlighting their role in next-generation quantum technologies. The content is suited for academics pursuing impactful research in condensed matter physics.
- 8. Condensed Matter Field Theory

This book presents a thorough treatment of field theory methods applied to condensed matter systems, including quantum many-body theory and critical phenomena. It provides the mathematical tools necessary to understand complex phase transitions and emergent phenomena. Graduate students and researchers will find it useful for developing theoretical papers in prestigious physics journals.

9. Materials for Energy Conversion and Storage Covering advanced materials relevant to energy applications, this book discusses the condensed matter aspects of batteries, supercapacitors, and photovoltaic devices. It emphasizes the relationship between material properties and device performance, integrating physics with materials science. The book is aimed at researchers looking to publish interdisciplinary studies in high-impact physics and materials journals.

Impact Factor Journal Of Physics Condensed Matter

Find other PDF articles:

 $\frac{http://www.devensbusiness.com/archive-library-310/Book?ID=QcU24-1926\&title=frontier-financial-rapid-city-sd.pdf}{}$

impact factor journal of physics condensed matter: Multidimensional Journal

Evaluation Stefanie Haustein, 2012-04-26 Scientific communication depends primarily on publishing in journals. The most important indicator to determine the influence of a journal is the Impact Factor. Since this factor only measures the average number of citations per article in a certain time window, it can be argued that it does not reflect the actual value of a periodical. This book defines five dimensions, which build a framework for a multidimensional method of journal evaluation. The author is winner of the Eugene Garfield Doctoral Dissertation Scholarship 2011.

impact factor journal of physics condensed matter: Journal of Physics, 2002 impact factor journal of physics condensed matter: Issues in Nuclear, High Energy, Plasma, Particle, and Condensed Matter Physics: 2011 Edition, 2012-01-09 Issues in Nuclear, High Energy, Plasma, Particle, and Condensed Matter Physics: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Nuclear, High Energy, Plasma, Particle, and Condensed Matter Physics. The editors have built Issues in Nuclear, High Energy, Plasma, Particle, and Condensed Matter Physics: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Nuclear, High Energy, Plasma, Particle, and Condensed Matter Physics in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Nuclear, High Energy, Plasma, Particle, and Condensed Matter Physics: 2011 Edition has been produced by the world's leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at Scholarly Editions $^{\text{\tiny TM}}$ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

impact factor journal of physics condensed matter: The Impact Factor of Scientific and Scholarly Journals Tibor Braun, 2007

impact factor journal of physics condensed matter: Surfactants in Tribology Girma Biresaw, K.L. Mittal, 2014-11-21 Surface science and tribology play very critical roles in many industries. Manufacture and use of almost all consumer and industrial products rely on the application of advanced surface and tribological knowledge. The fourth in a series, Surfactants in Tribology, Volume 4 provides an update on research and development activities connecting surfactants and tribological phenomena. Written by renowned subject matter experts, the book demonstrates how improved design of surfactants can be harnessed to control tribological phenomena. Profusely illustrated and copiously referenced, the chapters also discuss novel approaches to control tribological phenomena using surfactants including green surfactants. It also discusses the underlying tribological and surface science issues relevant to many situations in diverse industries.

The information in this volume provides a cutting-edge reference connecting the fields of surfactants and tribology as a way forward to novel, enhanced methods of controlling lubrication, friction, and wear. It reflects the latest developments, highlighting the relevance of surfactants in tribological phenomena in a broad range of industries. As we learn more about the connection between surfactants and tribology, new and improved ways to control lubrication, friction, and wear utilizing surfactants will emerge. This book takes us farther on the path towards this goal.

impact factor journal of physics condensed matter: Surfactants in Tribology, Volume 4 Girma Biresaw, K.L. Mittal, 2014-11-21 Surface science and tribology play very critical roles in many industries. Manufacture and use of almost all consumer and industrial products rely on the application of advanced surface and tribological knowledge. The fourth in a series, Surfactants in Tribology, Volume 4 provides an update on research and development activities connecting surfacta

impact factor journal of physics condensed matter: Understanding the Discrete Element Method Hans-Georg Matuttis, Jian Chen, 2014-05-12 Gives readers a more thorough understanding of DEM and equips researchers for independent work and an ability to judge methods related to simulation of polygonal particles Introduces DEM from the fundamental concepts (theoretical mechanics and solidstate physics), with 2D and 3D simulation methods for polygonal particles Provides the fundamentals of coding discrete element method (DEM) requiring little advance knowledge of granular matter or numerical simulation Highlights the numerical tricks and pitfalls that are usually only realized after years of experience, with relevant simple experiments as applications Presents a logical approach starting withthe mechanical and physical bases,followed by a description of the techniques and finally their applications Written by a key author presenting ideas on how to model the dynamics of angular particles using polygons and polyhedral Accompanying website includes MATLAB-Programs providing the simulation code for two-dimensional polygons Recommended for researchers and graduate students who deal with particle models in areas such as fluid dynamics, multi-body engineering, finite-element methods, the geosciences, and multi-scale physics.

impact factor journal of physics condensed matter: Treatise on Geophysics, Volume 2 G David Price, 2010-04-20 Treatise on Geophysics: Mineral Physics, Volume 2, provides a comprehensive review of the current state of understanding of mineral physics. Each chapter demonstrates the significant progress that has been made in the understanding of the physics and chemistry of minerals, and also highlights a number of issues which are still outstanding or that need further work to resolve current contradictions. The book first reviews the current status of our understanding of the nature of the deep Earth. These include the seismic properties of rocks and minerals; problems of the lower mantle and the core-mantle boundary; and the state of knowledge on mantle chemistry and the nature and evolution of the core. The discussions then turn to the theory underlying high-pressure, high-temperature physics, and the major experimental methods being developed to probe this parameter space. The remaining chapters explain the specific techniques for measuring elastic and acoustic properties, electronic and magnetic properties, and rheological properties; the nature and origin of anisotropy in the Earth; the properties of melt; and the magnetic and electrical properties of mantle phases. - Self-contained volume starts with an overview of the subject then explores each topic with in depth detail - Extensive reference lists and cross references with other volumes to facilitate further research - Full-color figures and tables support the text and aid in understanding - Content suited for both the expert and non-expert

impact factor journal of physics condensed matter: Big Science Transformed Olof Hallonsten, 2016-10-15 This book analyses the emergence of a transformed Big Science in Europe and the United States, using both historical and sociological perspectives. It shows how technology-intensive natural sciences grew to a prominent position in Western societies during the post-World War II era, and how their development cohered with both technological and social developments. At the helm of post-war science are large-scale projects, primarily in physics, which receive substantial funds from the public purse. Big Science Transformed shows how these projects, popularly called 'Big Science', have become symbols of progress. It analyses changes to the political

and sociological frameworks surrounding publicly-funding science, and their impact on a number of new accelerator and reactor-based facilities that have come to prominence in materials science and the life sciences. Interdisciplinary in scope, this book will be of great interest to historians, sociologists and philosophers of science.

impact factor journal of physics condensed matter: Bionanotechnology Anil Kumar Anal, 2018-02-02 This book deals with a subject of high interest and importance in all sectors, including biomedical, food, agriculture, energy, and environment. Biological systems are essential in nanotechnology, and many new applications are being developed by mimicking the natural systems. Approaching these topics from an engineering perspective, the book offers insight on the details of nanoscale fabrication processes as well as cell biology. The basics of biology and chemistry, with a focus on how to engineer the behavior of molecules at the nanoscale, are also explored and analyzed. The aim of the text is to provide the reader with broader knowledge of biological methods for signal transduction and molecular recognitions systems and how they can be replicated in bio-sensing applications. The reader will learn the basic structures and interactions of biomacromolecules for developing biocompatible and eco-friendly devices.

impact factor journal of physics condensed matter: THERMEC 2021 Mihail Ionescu, Christof Sommitsch, Cecilia Poletti, Ernst Kozeschnik, Tara Chandra, 2021-01-05 International Conference on Processing & Manufacturing of Advanced Materials Processing, Fabrication, Properties, Applications Selected, peer-reviewed papers from the International Conference on Processing & Manufacturing of Advanced Materials Processing, Fabrication, Properties, Applications (THERMEC 2021), May 10-14, 2021, Vienna, Austria

impact factor journal of physics condensed matter: Evaluative Informetrics: The Art of Metrics-Based Research Assessment Cinzia Daraio, Wolfgang Glänzel, 2020-07-23 We intend to edit a Festschrift for Henk Moed combining a "best of" collection of his papers and new contributions (original research papers) by authors having worked and collaborated with him. The outcome of this original combination aims to provide an overview of the advancement of the field in the intersection of bibliometrics, informetrics, science studies and research assessment.

impact factor journal of physics condensed matter: Issues in Nuclear, High Energy, Plasma, Particle, and Condensed Matter Physics: 2013 Edition , 2013-05-01 Issues in Nuclear, High Energy, Plasma, Particle, and Condensed Matter Physics: 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about High Energy Physics. The editors have built Issues in Nuclear, High Energy, Plasma, Particle, and Condensed Matter Physics: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about High Energy Physics in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Nuclear, High Energy, Plasma, Particle, and Condensed Matter Physics: 2013 Edition has been produced by the world's leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Photovoltaic Applications Sergio Pizzini, 2012-06-07 Today, the silicon feedstock for photovoltaic cells comes from processes which were originally developed for the microelectronic industry. It covers almost 90% of the photovoltaic market, with mass production volume at least one order of magnitude larger than those devoted to microelectronics. However, it is hard to imagine that this kind of feedstock (extremely pure but heavily penalized by its high energy cost) could remain the only source of silicon for a photovoltaic market which is in continuous expansion, and which has a cumulative growth rate in excess of 30% in the last few years. Even though reports suggest that the silicon share will slowly decrease in the next twenty years, finding a way to manufacture a specific solar grade feedstock in large quantities, at a low cost while maintaining the quality needed, still

remains a crucial issue. Thin film and quantum confinement-based silicon cells might be a complementary solution. Advanced Silicon Materials for Photovoltaic Applications has been designed to describe the full potentialities of silicon as a multipurpose material and covers: Physical, chemical and structural properties of silicon Production routes including the promise of low cost feedstock for PV applications Defect engineering and the role of impurities and defects Characterization techniques, and advanced analytical techniques for metallic and non-metallic impurities Thin film silicon and thin film solar cells Innovative quantum effects, and 3rd generation solar cells With contributions from internationally recognized authorities, this book gives a comprehensive analysis of the state-of-the-art of process technologies and material properties, essential for anyone interested in the application and development of photovoltaics.

impact factor journal of physics condensed matter: Polymer Electrolyte Fuel Cells Michael Eikerling, Andrei Kulikovsky, 2014-09-23 The book provides a systematic and profound account of scientific challenges in fuel cell research. The introductory chapters bring readers up to date on the urgency and implications of the global energy challenge, the prospects of electrochemical energy conversion technologies, and the thermodynamic and electrochemical principles underlying the op

impact factor journal of physics condensed matter: Thermoelectrics and its Energy Harvesting, 2-Volume Set David Michael Rowe, 2018-10-03 Comprising two volumes, Thermoelectrics and Its Energy Harvesting reviews the vast improvements in technology and application of thermoelectric energy with a specific intention to reduce and reuse waste heat and improve novel techniques for the efficient acquisition and use of energy. Materials, Preparation, and Characterization in Thermoelectrics i

impact factor journal of physics condensed matter: Proceedings of MEST 2012: Electronic Structure Methods with Applications to Experimental Chemistry Philip E. Hoggan, 2014-01-03 Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. This volume focuses on the theory of heavy ion physics in medicine. - Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field and this volume focuses on the theory of heavy ion physics in medicine

impact factor journal of physics condensed matter: Educational Rankings Annual 2005 Gale Group, 2004-09 This up-to-date resource presents more than 4,000 national, regional, local and international lists and rankings compiled from hundreds of respected sources. Entries typically include a description of the ranking; background information on criteria for establishing the hierarchy; additional remarks about the ranking; the complete or partial (if extensive) ranking; and a complete source citation for locating additional information if necessary.

impact factor journal of physics condensed matter: Low Carbon Energy Technologies in Sustainable Energy Systems Grigorios L. Kyriakopoulos, 2021-01-08 Low Carbon Energy Technologies for Sustainable Energy Systems examines, investigates, and integrates current research aimed at operationalizing low carbon technologies within complex transitioning energy economies. Scholarly research has traditionally focused on the technical aspects of exploitation, R&D, operation, infrastructure, and decommissioning, while approaches which can realistically inform their reception and scale-up across real societies and real markets are piecemeal and isolated in separate literatures. Addressing both the technical foundations of each technology together with the sociotechnical ways in which they are spread in markets and societies, this work integrates the technoeconomic assessment of low carbon technologies with direct discussion on legislative and regulatory policies in energy markets. Chapters address issues, such as social acceptance, consumer awareness, environmental valuation systems, and the circular economy, as low carbon technologies expand into energy systems sustainability, sensitivity, and stability. This collective research work is relevant to both researchers and practitioners working in sustainable energy systems. The combination of these features makes it a timely book that is useful and attractive to university

students, researchers, academia, and public or private energy policy makers. - Combines socio-cultural perspectives, environmental sustainability, and economic feasibility in the analysis of low carbon energy technologies - Assesses regulatory governance impacting the environmental protection and the social cohesion of environmentally-directed energy markets - Reviews the carbon trade exchange, attributing economic value to carbon and enabling its trading perspectives by people, companies or countries invested in low carbon technologies

impact factor journal of physics condensed matter: Numerical Correlation between Impact Factor and Web Ranking of Electronic Scientific Journals Using Regression Analysis Giorgos Kouropoulos, Γιώργος Κουρόπουλος, 2017-12-15 The present study attempts to examine the numerical correlation between web ranking of electronic scientific journals and impact factor of these journals using the method of regression analysis. Regression analysis allows the option of investigating and predicting the numerical relationship between website ranking of scientific journals on the World Wide Web and the value of impact factor of the journals. A sample of 57 publishers with 6,272 scientific journals and 50 standalone scientific journals was analyzed during research procedure. In this study, two different indicators about websites classification on World Wide Web were examined separately for 57 publishers and 50 standalone journals, Alexa rank and Statscrop rank. The electronic databases through the internet constitute the main information resources of this study about the impact factors. The general conclusion that arises is that the impact factor of electronic scientific journals illustrates a very strong positive correlation with classification of websites on the World Wide Web. Furthermore, it is concluded that the change of web ranking as a function of impact factor is governed by a Gaussian function or rational function with lower Pearson coefficient and presents non-linearly correlation. Even if there is very strong correlation between impact factor and web rank for electronic journals, the prediction of impact

Related to impact factor journal of physics condensed matter

factor from web rank is not possible and presents many divergences.

]]]]]]]]]]]][] "Genshin Impact" [] -]]]
] SCI_JCRSCI
effect, affect, impact ["[]"[][][] - [] effect, affect, [] impact [][][][][][][][] 1. effect. To
effect (\square) $\square\square\square\square/\square\square$ $\square\square\square\square\square$ \leftarrow which is an effect (\square) The new rules will effect (\square), which is an
Communications Earth & Environment
Environment
csgo[rating[rws[kast[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]0.9DDDDDDDDDDDKDDDDDDDDDD1DDD
2025 win11 win11:win7win7 win17 win11win10
pc
]]]]]]]]]] 10]]]]]]]]]]]]]]]]]]]]]]]]]]
DONature synthesis
]Nature Synthesis
]]]]]]]]]]]]]" Genshin Impact"] -]]]
]]]]]]]SCI]]CR]]]]]]SCI]]]]]]]]]]]]]]]]]

$ effect \ (\ \ \ \) \ \ \ \ \ \ \ \ \ \ \ \ \ $
Communications Earth & Environment [] - [] [] Communications Earth & Earth
Environment
csgo[rating[rws]kast[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
0.900000000KD000000010000
Impact 1 1 1 1 1 1 1 1 1
2025 win11 win11:win7win7 win11 win11 win10
pc ::::::::::::::::::::::::::::::::::::
000001 0 000000 - 00 0000000000000000000000000
One Nature synthesis One of the state of the
Nature Synthesis 00000000000000000000000000000000000
effect, affect, impact ["[]"[][][] - [] effect, affect, [] impact [][][][][][] 1. effect. To
effect (\square) $\square\square\square\square/\square\square$ \square \square \square \square \square \square \square \square \square
Communications Earth & Environment [] - [] [] Communications Earth & Earth
Environment
csgo[rating[rws]kast[]][][][][][][][][][][][][][][][][][][
0.9
Impact 1 1 1 1 1 1 1 1 1
2025 \$ - 0.000 \$ - 0.00
pc
One of the synthesis of
Nature Synthesis

Back to Home: http://www.devensbusiness.com